2023年9月20日,国际著名儿童青少年精神健康期刊《Journal of the American Academy of Child and Adolescent Psychiatry》发表题为“LeGoing Lifespan Connectome Gradients for a Road to Mental Health”的特邀社论[1],介绍了来自新加坡国立大学Juan Zhou实验室所揭示的学龄前儿童自发脑活动网络梯度及其个体差异与精神健康的关联规律[2]。在这一特邀社论中,左西年课题组为进一步解析人类生命周期脑形态结构图表[3]的功能表现,聚焦毕生发展历程中可塑性顶峰最晚(28.7岁)的脑白质容量,基于前期所提出的人脑连接组生成模型[4]和一系列近来基于自发脑活动网络梯度所取得的不同年龄阶段研究,提炼高维脑功能的二维流形,据此构建了人类生命周期脑功能连接梯度的毕生发展模式的草图(图1)。
图1. 人类生命周期自发脑活动网络梯度的毕生发展模式图
社论展望,未来精准绘制人类生命周期自发脑活动网络梯度的毕生发展图表将架设通往精神健康和脑健康之路,深入推进针对自发脑活动网络梯度的高精度计算和个体差异测量的信效度研究是构建这一脑功能图表的前提。左西年课题组近期就自发脑活动网络神经科学应用于个体差异测量的优化提出了计算规范[5],参与开展了长期干预的效度研究[6],面向临床转化应用提出了研究指南[7],并正在开展大规模人口神经科学[8]的参考常模研究。
参考文献
[1] Zhou ZX, Zuo XN (2023) Editorial: LeGoing Lifespan Connectome Gradients for a Road to Mental Health. J Am Acad Child Adolesc Psychiatry, doi: 10.1016/j.jaac.2023.08.006.
[2] Nguyen TT, et al. (2023) Variations in Cortical Functional Gradients Relate to Dimensions of Psychopathology in Preschool Children. J Am Acad Child Adolesc Psychiatry, doi: 10.1016/j.jaac.2023.05.029.
[3] Bethlehem RAI, et al (2022) Brain charts for the human lifespan. Nature, 604: 525-533.
[4] Zuo XN, He Y, Betzel RF, Colcombe S, Sporns O, Milham MP (2017) Human Connectomics across the Life Span. Trends Cogn Sci, 21:32-45.
[5] Jiang C, He Y, Betzel RF, Wang YS, Xing XX, Zuo XN (2023) Optimizing network neuroscience computation of individual differences in human spontaneous brain activity for test-retest reliability. Net Neurosci, 7:1080-1108.
[6] Xu T, Wu Y, Zhang Y, Zuo XN, Chen F, Zhou C (2023) Reshaping the Cortical Connectivity Gradient by Long-Term Cognitive Training During Development. Neurosci Bull, doi: 10.1007/s12264-023-01108-8.
[7] Zhou ZX, Chen LZ, Milham MP, Zuo XN; Lifespan Brain Chart Consortium (LBCC) (2023) Six cornerstones for translational brain charts. Sci Bull, 68:795-799.
[8] Zuo XN, He Y, Su X, Hou XH, Weng X, Li Q (2018) Developmental population neuroscience: emerging from ICHBD. Sci Bull, 63:331-332.