Selected publications (*Corresponding author), see full publications at:
https://scholar.google.com/citations?user=GhpPZvEAAAAJ&hl=en&oi=ao
1. Quintana, D.S., Lischke, A., Grace, S., Scheele, D., Ma, Y., Becker B. (2021). Advances in the field of intranasal oxytocin research: lessons learned and future directions for clinical research. Molecular Psychiatry, 26 (1), 80-91.
2. Yang, J., Zhang, H., Ni, J., De Dreu, C., Ma, Y.* (2020). Within-group synchronization in the prefrontal cortex associates with intergroup conflict. Nature Neuroscience. 23, 754–760.
3. De Dreu, C., Gross, J., Fariña, A., Ma, Y. (2020). Group cooperation, carrying-capacity stress, and intergroup conflict. Trends in Cognitive Sciences, 24, 760-776.
4. Wang, D. Ma, Y.*. (2020). Oxytocin facilitates valence-dependent valuation of social evaluation of the self. Communications biology 3 (1), 1-12.
5. Liu, Y., Li, S., Lin, W., Li, W., Yan, X., Wang, X., Pan, X., Rutledge, R.B., Ma, Y.* (2019). Oxytocin modulates social value representations in the amygdala. Nature Neuroscience, 22, 633-41.
6. Zhang, H., Gross, J., De Dreu, C., Ma, Y.*(2019). Oxytocin promotes coordinated out-group attack during intergroup conflict in humans. eLife, 8, e40698.
7. Yan, X., Yong, X., Huang, W.,Ma, Y.* (2018). Placebo treatment facilitates social trust and approach behavior. Proc Natl Acad Sci USA, 115:5732-5737.
8. Feng, C., Yan, X., Huang, W., Han, S.,Ma, Y.* (2018). Neural representations of the multidimensional self in the cortical midline structures. NeuroImage 183, 291-299.
9. Wang, D., Yan, X., Li, M., Ma, Y.* (2017). Neural substrates underlying the effects of oxytocin: A quantitative meta-analysis of pharmaco-imaging studies. Social Cognitive and Affective Neuroscience, 12: 1565-1573.
10. Ma, Y.,* Li, S., Wang, C., Liu, Y., Li, W. et al. (2016). Distinct oxytocin effects on belief updating in response to desirable and undesirable feedback. Proc Natl Acad Sci USA,113:9256-61.
11. Ma, Y.,* Shamay-Tsoory, S., Han S., Zink, C. F. (2016).Oxytocin and Social Adaptation: Insights from Neuroimaging Studies of Healthy and Clinical Populations. Trends in Cognitive Sciences, 20: 133–145.
12. Ma, Y.,* Wang, C., Luo, S., Li, B., Wager, T.D., Rao, Y. et al. (2016). Serotonin transporter polymorphism alters citalopram effects on human pain responses to physical pain. Neuroimage, 135:186-96.
13. Ma, Y.* (2015). Neuropsychological mechanism underlying antidepressant effect: a systematic meta-analysis. Molecular Psychiatry, 20: 311-319.
14. Han, S. & Ma, Y.* (2015). A culture-behavior-brain loop model of human development. Trends in Cognitive Sciences, 19: 666-676.
15. Ma, Y.,* Liu, Y., Rand, D. G., Heatherton, T. F., Han. (2015). Opposing oxytocin effects on inter-group cooperative behavior in intuitive and reflective minds. Neuropsychopharmacology, 40: 2379-2387.
16. Ma, Y.,* Li, B., Zhang, W., Rao, Y., Han, S. (2015). Allelic variation in 5-HTTLPR and the effects of citalopram on the emotional neural network. British Journal of Psychiatry, 206: 385-392.
17. Ma, Y., Wang, C., Shi, Z., Sun, Y., Sheng, F. et al. (2014). 5-HTTLPR polymorphism modulates neural mechanisms of negative self-reflection. Cerebral Cortex, 24, 2421-2429.
18. Han, S. & Ma, Y.* (2014). Cultural differences in human brain activity. NeuroImage, 99, 293-300.
19. Ma, Y.,* Wang, C., Li, B., Zhang, W., Rao, Y. et al. (2014). Does self-construal predict activity in the social brain network? A genetic moderation effect. Social Cognitive and Affective Neuroscience, 9, 1360-1367.
20. Ma, Y., Bang, D., Wang, C., Allen, M., Frith, C. D. et al. (2014). Sociocultural patterning of neural activity during self‐reflection. Social Cognitive and Affective Neuroscience, 9, 73-80.