Selective Maturation of Temporal Dynamics of Intracortical Excitatory Transmission at the Critical Period Onset

Graphical Abstract

Selective Synaptic Changes at Critical Period Onset

Pre-critical period

Critical period onset

Excitatory synapse
Inhibitory synapse
Short-term plasticity
Depression Facilitation

Highlights

- Temporal dynamics of intracortical excitatory synapses mature at critical period onset
- Dynamics of cortical inhibitory synapses and thalamocortical inputs are unchanged
- This selective modulation depends on early visual experience
- Ubiquitous reduction of presynaptic release underlies the selective modulation.

Authors

Qinglong Miao, Li Yao, Malte J. Rasch, Qian Ye, Xiang Li, Xiaohui Zhang

Correspondence

xhzhang@bnu.edu.cn

In Brief

Miao et al. demonstrate that in the developing visual cortical layer 4 circuit, temporal dynamics of intracortical excitatory synapses are selectively regulated by visual experience prior to the critical period onset. This provides an additional essential circuit mechanism for regulating critical period plasticity aside from the well-known inhibitory threshold mechanism.
Selective Maturation of Temporal Dynamics of Intracortical Excitatory Transmission at the Critical Period Onset

Qinglong Miao,1,2,3 Li Yao,1,3 Malte J. Rasch,1 Qian Ye,1 Xiang Li,1 and Xiaohui Zhang1,*
1State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
2Institute of Neuroscience, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
3Co-first author
*Correspondence: xh.zhang@bnu.edu.cn
http://dx.doi.org/10.1016/j.celrep.2016.07.013

SUMMARY

Although the developmental maturation of cortical inhibitory synapses is known to be a critical factor in gating the onset of critical period (CP) for experience-dependent cortical plasticity, how synaptic transmission dynamics of other cortical synapses are regulated during the transition to CP remains unknown. Here, by systematically examining various intracortical synapses within layer 4 of the mouse visual cortex, we demonstrate that synaptic temporal dynamics of intracortical excitatory synapses on principal cells (PCs) and inhibitory parvalbumin- or somatostatin-expressing cells are selectively regulated before the CP onset, whereas those of intracortical inhibitory synapses and long-range thalamocortical excitatory synapses remain unchanged. This selective maturation of synaptic dynamics results from a ubiquitous reduction of presynaptic release and is dependent on visual experience. These findings provide an additional essential circuit mechanism for regulating CP timing in the developing visual cortex.

INTRODUCTION

Neuronal circuits in many brain regions are functionally immature at birth. Their synaptic wiring and function undergo experience-dependent maturation postnatally, which is especially heighted during well-defined early postnatal time windows, namely critical periods (CPs) (Hubel and Wiesel, 1970; Levelt and Hübener, 2012). The experience-dependent plasticity during the CP is best exemplified by visual input-dependent ocular dominance (OD) plasticity in the developing mammalian primary visual cortex (V1), which is essential for the emergence of the binocular vision (Wang et al., 2010; Espinosa and Stryker, 2012). An evolution of patterned cortical activities during early development has been proposed to play critical roles in initiating the CP (Toyoizumi et al., 2013; Chen et al., 2015). Temporal patterns of neuronal spiking activity are important for inducing structural plasticity of dendritic spines (Wyatt et al., 2012) that underlies the CP plasticity (Mataga et al., 2004). Dynamic changes of synaptic efficacy in the context of patterned spike trains, also known as short-term synaptic plasticity (STP), are critical elements that are involved in the dynamic processing of neural information in a neural circuit (Klug et al., 2012; Klyachko and Stevens, 2006). Previous studies showed that transgenic mice that lacked experience-dependent CP plasticity often exhibited defects in STP at some cortical synapses (Choi et al., 2002; Postma et al., 2011; Gu et al., 2013; He et al., 2014). Specifically, deletion of gad 65 (the 65-kDa isoform of glutamic acid decarboxylase GAD65) or Cx36 (connexin36, a gap junction protein) resulted in an absence of the CP plasticity and impaired STP at GABAergic synapses in response to high-frequency activations in the visual cortical circuit (Hensch et al., 1998; Choi et al., 2002; Postma et al., 2011). Moreover, selective deficiency of neuronal activity-regulated pentraxin (NARP) or Rett syndrome-related protein methyl-CpG-binding protein 2 (MeCP2) in parvalbumin (PV)-expressing GABAergic interneurons also impaired the STP at cortical excitatory synapses onto PV cells and the CP plasticity in the developing mouse V1 (Gu et al., 2013; He et al., 2014). These findings suggest that synaptic dynamics at cortical excitatory and inhibitory synapses could be involved in the regulation of CP plasticity of developing V1 circuits.

In addition to receiving afferent inputs from various subcortical areas, excitatory and inhibitory neurons in the sensory neocortex construct an intricate neural network by forming diverse synapses among them. Intracortical excitatory and inhibitory synapses, which are actively involved in dynamic transfer and processing of synaptic information (Abbott and Regehr, 2004; Etherington and Williams, 2011; Rotman et al., 2011; Klug et al., 2012), exhibit differential STP properties (Thomson, 1997; Markram et al., 1998; Reyes et al., 1998; Gupta et al., 2000; Beierlein and Connors, 2002; Beierlein et al., 2003; Ma et al., 2012). Moreover, the STP of neocortical synapses, which is modulated by experience developmentally (Takesian et al., 2010; Lu et al., 2014), could contribute to the regulation of CP...
Please cite this article in press as: Miao et al., Selective Maturation of Temporal Dynamics of Intracortical Excitatory Transmission at the Critical Period Onset, Cell Reports (2016), http://dx.doi.org/10.1016/j.celrep.2016.07.013
plasticity of the developing V1 (Choi et al., 2002; Postma et al., 2011; Gu et al., 2013; He et al., 2014). However, given the diverse synapses with differential STP properties in neocortical circuits, a systematic examination on developmental regulation of the dynamics of diverse cortical synapses during the transition to CP is still lacking.

In the present study, using whole-cell recordings in acute mouse visual cortical slices, we systematically examined the developmental changes of STP of the intracortical synapses among excitatory principal cell (PC), inhibitory PV-, and somatostatin (Sst)-expressing interneuron as well as the afferent thalamocortical excitatory synapse onto the layer 4 PC and PV interneuron during a period from eye opening (postnatal days 14–15 [P14–15]) to the CP onset (P19–21). Our results show that STP of intracortical excitatory synapses, but neither intracortical inhibitory synapses nor long-range thalamocortical synapses, undergo differential changes during the transition to CP. Dark rearing of animals from birth prevents the developmental modulation of STP at the intracortical excitatory synapses, suggesting the requirement of visual experience during the process. Further variance-mean analyses of synaptic transmission reveal that a ubiquitous reduction of presynaptic glutamate release probability underlies the selective STP modulation at developing intracortical excitatory synapses. Thus, our results demonstrate a synaptic mechanism by which intracortical excitatory synapses in the developing V1 layer 4 circuits contribute to the transition to CP.

RESULTS

Developmental Modulation of STP at Intracortical Synapses onto Layer 4 PCs Is Restricted to Excitatory Synapse

The CP for OD plasticity in the developing mouse V1 begins at P19–20 and peaks at P28–30 (Gordon and Stryker, 1996). To examine developmental changes of synaptic dynamics at cortical synapses across the CP, we systematically assayed transmission strength and dynamics of synapses within the cortical layer 4, a main thalamorecipient lamina. Acute slices of visual cortex were prepared from mice at different postnatal ages, as follows: immediately after eye opening (P14–15, pre-CP), at the CP onset (P19–21), and during the CP (P25–31). In the first set of experiments, we examined intracortical excitatory and inhibitory synapses onto PC. By recording from pairs of layer 4 PCs (Figure 1A), we found that connection probability between PCs (PC–PC synapse) was 11.2% (17 connections out of 152 tested pairs) and 10.3% (19 connections out of 185 tested pairs) for pre-CP (P14–15) and CP onset (P19–21), respectively (Figure 1A, right; p = 0.79, χ² test). However, despite of the constant connection probability, the amplitude and total charge of basal unitary PC–PC excitatory postsynaptic currents (uEPSCs) decreased by 49.8% and 50.3%, respectively, from P14–15 to P20–21 (Figures 1B and 1C). This result is consistent with a recent study on layer 2/3 recurrent excitatory synapses in the developing mouse V1 (Ko et al., 2013), but different from the observed increase of PC-PC synaptic strength in the developing rat layer 4 circuit (Wang et al., 2012). This discrepancy could result from different species. Moreover, the average uEPSC 10%–90% rise and decay time remained unchanged (Table S1). However, PC–PC synaptic transmission showed a significant decrease in short-term depression (STD), elicited by five consecutive presynaptic pulses at 20 Hz, from P14–15 to P20–21 (Figures 1A and 1D; p = 1.8 × 10⁻⁶, two-way ANOVA), and this reduction was more significant when 40 Hz pulses were used (p = 5.2 × 10⁻¹³).

The transition from pre-CP to CP depends on experience. To examine whether the developmental changes at the PC–PC synapse observed above depend on experience, we dark-reared mice from birth, which is known to effectively delay the opening of CP (Espinosa and Stryker, 2012). We found that the unitary EPSC amplitude, total charge, and STD properties at PC–PC synapses in dark-reared mice were similar to that of P14–15 mice (Figures 1B–1D), suggesting experience dependency of the developmental modulations from pre-CP to the CP onset.

We next examined whether similar developmental changes may occur at intracortical inhibitory synapses during the same period. GABAergic inhibitory interneurons can be classified into distinct subgroups based on the expression of different calcium-binding proteins and neuropeptides, among which PV- and Sst-expressing neurons constitute a large fraction (Markram et al., 2004; Xu et al., 2010; Rudy et al., 2011). In this set of experiments, inhibitory PV and Sst cells were labeled with tdTomato by respectively crossing PV-Cre and Sst-Cre transgenic mice to the Cre-dependent tdTomato reporter mice Ai9 (see Experimental Procedures).

Simultaneous recordings were made on pairs of PV cell and PC in the layer 4 in slices prepared from P14–15, 19–21, and 25–31 mice. We found that, while inhibitory synapse from PV cell onto PC (PV–PC) showed little change in its connection probability (Figure 1E, right; p > 0.05 for all two-group comparisons, χ² test), its uEPSC amplitudes increased by 60.4% from P14–15 to P19–21 (Figures 1E, middle, and 1F). However, the STD of PV–PC inhibitory synapse did not change from the pre-CP to CP onset when tested with 5 consecutive presynaptic pulses at 20 or 40 Hz (Figure 1G) or with 10 pulses at 20 Hz (Figures S1A and 1B). Dark-rearing until P20–21 did not affect the unitary strength and STD of PV–PC inhibitory synapses (Figures 1F and 1G), suggesting that the developmental change at

Figure 1. Selective Modulation of STP of Intracortical Synapses onto Layer 4 PC at the Transition to CP

(A) Left: diagram for paired whole-cell recordings of excitatory PC–PC synapse. Middle: representative traces of averaged uEPSCs recorded (Rec.) from a PC in slices from P15, P20, or P20DR mice. Right: connection probability at different postnatal stages.

(B and C) Summarize results of average amplitude (B) and total charge (C) of the first uEPSCs.

(D) STDs of PC–PC synapses, tested by presynaptic stimuli at 20 (left) and 40 Hz (right), at P14–15, P20–21, and P20–21DR.

(E–G) Similar to (A–D), except at the PV–PC inhibitory synapse.

(H–J) Similar to (A–D), except at the Sst–PC inhibitory synapses.

Error bars in the plots represent SEM. *p < 0.05, **p < 0.01, ***p < 0.001. n, the number of tested synapses.
Please cite this article in press as: Miao et al., Selective Maturation of Temporal Dynamics of Intracortical Excitatory Transmission at the Critical Period Onset, Cell Reports (2016), http://dx.doi.org/10.1016/j.celrep.2016.07.013

(legend on next page)
PV-PC inhibitory synapses is independent on experience. In contrast, there was a slight but significant decrease in the STD of PV→PC synapse during the CP (Figure 1G, p = 0.00053, P19–21 versus P25–31, ANOVA; Figures S1A and S1B).

Sst cells are another major subgroup of inhibitory interneuron, comprising approximately 30% of all neocortical interneurons (Rudy et al., 2011) and forming inhibitory synapses primarily on distal dendrites of the PC (Fino and Yuste, 2011). In visual cortical slices from Sst-Cre::Ai9 mice, we used a train of 10 presynaptic spikes at 20 or 40 Hz to assay the efficacy and STD of layer 4 Sst→PC inhibitory synapses due to their relatively low release probability (Figure 1H). Unlike the PC→PC and PV→PC synapses that show STD, Sst→PC synapse in the layer 4 exhibited a slight short-term facilitation (STF) (Figure 1H). We found that the connection probability between the Sst cell and PC decreased substantially from P14–15 to P20–22 (p = 0.0071, χ² test; Figure 1H, right), along with decreased average strength (Figure 1I). However, no change was observed in the STF of Sst→PC inhibitory synapses from P14–15 to P20–22 when tested at 20 or 40 Hz (Figure 1J; p = 0.14 for 20 Hz; p = 0.22 for 40 Hz; ANOVA). Moreover, dark rearing had no effect on the connection probability, unitary strength, or STF at Sst→PC inhibitory synapses over this developmental period (Figures 1H–1J).

Taken together, these results suggest that within the layer 4, excitatory and inhibitory synapses onto the PC undergo differential functional changes during the transition to CP onset, while experience-dependent selective modulation of STP occurs only at the PC→PC excitatory synapse.

Differential STP Changes at Intracortical Synapses onto Inhibitory PV Cells

Given that PV-mediated cortical inhibition is considered as a key factor in regulating the CP onset (Hensch, 2004; Espinosa and Stryker, 2012), we next examined local afferent synapses onto layer 4 PV cells during the transition to CP. Because the membrane resistance (Rm) of cortical PV cells was low and developmentally reduced (P14–15, 78 ± 5.30 MΩ, n = 34; P19–21, 56.64 ± 1.72 MΩ, n = 44), unitary postsynaptic synaptic potentials (uEPSPs), rather than unitary PSCs, were recorded from the PV cell under the current-clamp mode (see Experimental Procedures). Our recordings showed that the PC→PV connection probability did not change from P14 to P30 (Figure 2A; p > 0.05, χ² test). Although the average uEPSP amplitude of the PC→PV synapse did not change significantly across these developmental periods (Figure 2B), its STDs, tested by 20 or 40 Hz presynaptic pulses, were significantly attenuated (Figures 2A, traces, and 2C; ANOVA). Similar changes in STDs at these PC→PV excitatory synapses were also observed over the development when uEPSCs were measured under voltage-clamp (Figures S1C–S1F). We also noted that the uEPSP kinetics became faster over the development (Table S1). Moreover, dark rearing had no effect on the STD of PC→PV excitatory synapses, together with the increased reciprocal PV→PC inhibitory strength (Figure 1F), at the CP onset can lead to an enhanced feed-back cortical inhibition exerted by PV cells.

Both chemical and electrical synapses exist between neighboring cortical PV cells to form an inhibitory network (Pan-gratz-Fuehrer and Hestrin, 2011). We next examined these two types of synapse onto layer 4 PV cells, with simultaneous whole-cell recordings from neighboring PV cells in the V1 slices at P15–16 and P20–21. The probabilities of forming GABAergic chemical synapses between two PV cells were 75% and 71% at P15–16 and P20–21, respectively (Figure 2D; p = 0.73, χ² test), and ~50% of the tested pairs showed reciprocal chemical synapses at both ages (P15–16, 54.5%; P20–21, 52.6%). The averaged amplitude of unitary inhibitory postsynaptic potential (uIPSP) remained largely unchanged from the pre-CP to CP onset (Figure 2E), but there was a substantial reduction of its rise and decay time (Table S1). However, unlike the PC→PV excitatory synapse, PV→PV inhibitory synapse did not show any developmental change in STD from pre-CP to CP onset when tested with 20 Hz presynaptic spikes (Figures 2D and 2F; p = 0.15, ANOVA). We also observed that the couple probability and efficacy of electrical synapse between PV cells were not changed during the transition to the CP onset (Figures 2G and 2H). Moreover, dark rearing largely unaffected both chemical and electrical synapses between the PV cells except for decreasing the electrical coupling efficacy (Figures 2D, 2E, 2G, and 2H, gray; p = 0.027 in Figure 2H).

In the cortical inhibitory network, PV cells also receive inhibitory afferents from the Sst cell within the same layer, forming a dis-inhibitory circuit (Gibson et al., 1999; Pfeffer et al., 2013; Xu et al., 2013). Thus, we further examined the development of layer 4 Sst→PV inhibitory synapse in visual cortical slices from Sst-Cre::Ai9 mice at P14–16 and P20–23 (Figure 2I, left). Our results showed that (1) its connection probability decreased during the transition to the CP onset (p = 0.043, χ² test; Figure 2I, right) and (2) its average uIPSC amplitude...
increased by 89.7% (p = 0.005, Figure 2J), along with decreased rise time and τdecay of uIPSCs (Table S1). When tested with 20 or 40 Hz presynaptic pulses, Sst→PV inhibitory synapses showed neither depression nor facilitation, and there was no change in STP from the pre-CP to CP onset (Figures 2I, middle, and 2K; p = 0.39 and 0.096 for 20 and 40 Hz, ANOVA).

Thus, by examining diverse types of local synapse onto the PV cell, we again demonstrate that only STP at intracortical excitatory synapses onto the PV cell undergoes an experience-dependent modulation from the pre-CP to CP onset.

STP Change in Inhibitory Sst Cells Is Also Confined to Excitatory Synapses

We further examined the developmental modulation of local synapses onto the layer 4 Sst cell. The PC→Sst excitatory synapse has characteristically low release probability and strong STF (Reyes et al., 1998; Rozov and Burnashev, 1999). Indeed, we observed a strong STF at the PC→Sst excitatory synapse when 10 presynaptic pulses at 20 or 40 Hz were delivered (Figure 3A). To calculate the extent of STF, each unitary excitatory postsynaptic potential (uEPSP) amplitude was normalized to the mean amplitude of the first 3 uEPSPs. We found that while the probability of forming PC→Sst synapses changed little from the pre-CP to CP onset (p = 0.48, χ² test; Figure 3A), their unitary strength was greatly reduced (measured by the average amplitude of the first uEPSPs, p = 0.0032; Figure 3B). Moreover, there was no significant change in the uEPSP kinetics (Table S1).

Interestingly, the PC→Sst excitatory synapse exhibited an augmentation in STF from P14–15 to P20–22 (p = 4.8 × 10⁻¹¹, 20 Hz; p = 1.1 × 10⁻⁷, 40 Hz; ANOVA; Figures 3A and 3C). Further experiments using dark-reared mice at P20–22 showed that visual deprivation effectively retarded the developmental augmentation of STF at the PC→Sst synapse, while its connection probability and unitary strength were not affected (Figures 3A–3C).

Cortical Sst cells barely form inhibitory synapse between themselves (Gibson et al., 1999; Hu et al., 2011), but receive inhibitory synapses from other types of cortical interneurons including the PV cell (Ma et al., 2012; Pfeffer et al., 2013). For layer 4 PV→Sst inhibitory synapses, we found 12 connected pairs out of 35 tested (34.3%) at P14–16 and 14 connected pairs out of 68 tested (20.6%) at P20–23, indicating little change in its connection probability during this developmental period (p = 0.13, χ² test; Figure 3D), while their unitary strength decreased by 54.9% (Figure 3E). Similarly, STP of the PV→Sst inhibitory synapses also showed no change from the pre-CP to CP onset (p = 0.38, 20 Hz; p = 0.45, 40 Hz; ANOVA; Figures 3D and 3F). However, the uIPSCs showed significant changes in their kinetics over this period (Table S1).

Taken all above results together, our systematic examination on different intracortical synapses formed among layer 4 PC, PV, and Sst cells suggests that STP of local excitatory synapses from the PC is selectively modulated in a target-cell-independent manner from eye opening to the CP onset. In contrast, STPs of all local inhibitory synapses are kept constant, despite changes in the connection probability, strength, and response kinetics among various intracortical synapses.
Unchanged STP of Thalamocortical Synapses onto Layer 4 PC and PV Cells

Given that visual thalamic inputs directly project to the layer 4 PC and PV cell (Cruikshank et al., 2010; Kloc and Maffei, 2014), we also examined these long-range thalamocortical (tc) excitatory synapses. To isolate putative tcEPSPs recorded from PCs or PV cells in cortical slices, a cortical silencing cocktail (50 μM muscimol and 70 μM SCH50911) was applied in the artificial cerebrospinal fluid (aCSF) bath solution (Liu et al., 2007; Khibnik et al., 2010). A concentric bipolar electrode (diameter 125 μm) was placed at the white matter to activate the ascending axonal fibers, which consist of both TC projection axons and thinner cortical collateral fibers from the layer 6 corticothalamic (CT) cells (Figure 4A). Consistent with previous results (Ahmed et al., 1997; Beierlein and Connors, 2002), the field stimulation often elicited the following two components of monosynaptic EPSPs in the layer 4 PCs and PV cells: tcEPSPs with short latencies and corticothalamic (ct)EPSPs with relatively longer latencies (Figures 4A–4C2). Such separation of the TC and CT inputs was further confirmed by analyzing the ratio of latencies of the first two EPSPs (second/first) (Beierlein and Connors, 2002), in which tcEPSPs showed a systematic decrease in the latency ratio (p = 0.007, nonparametric paired-sample sign test; Figure 4D, bottom) and tcEPSPs did not (p = 0.69; Figure 4D, top). Moreover, ctEPSPs were less STD than tcEPSPs in the PC and PV cell (Figures 4B1 and 4B2). We used these criteria to separate the evoked tcEPSPs in the following analysis.

We first assessed developmental changes of the strength of TC inputs (tcEPSPs) in the layer 4 PC or PV cell in slices prepared from P15–16 or P20–21 mice, by increasing stimulation intensity stepwise to achieve the maximal amplitude of the first tcEPSP (see Experimental Procedures). The results showed an elevated input/output curves for the TC excitory inputs to both PCs (TC→PC) (Figure 4E, p = 0.032; Kolmogorov-Smirnov test) and PV cells (TC→PV) (Figure 4F, top; p = 0.0034) over this period. Similar to previous results from the somatosensory and visual cortices (Cruikshank et al., 2010), tcEPSPs evoked by 20 Hz spike trains in the PV cell were more easily depressed than that in the PC (Figures 4B1, 4B2, 4E, and 4F). However, when comparing the STD between P15–16 and P20–21, we did not observe any significant difference at the TC→PC and TC→PV synapses between these two ages (Figures 4E and 4F, bottom; p = 0.27 and 0.23 for TC→PC and TC→PV synapses, ANOVA). It suggests that, unlike the layer 4 intracortical excitatory synapses, the temporal dynamics of these long-range TC excitatory inputs are not developmentally modulated from pre-CP to CP onset.

Ubiquitous Decrease in Presynaptic Release Probability at Intracortical Excitatory Synapses

Next, we examined presynaptic or postsynaptic mechanisms that underlie the selective modulation of STPs of the intracortical excitatory synapses over the development. Analysis of the failure rate and the coefficients of variation (C.V.) of evoked synaptic responses at individual PC→PC, PC→PV, and PC→Sst excitatory synapses indicated that the theses two parameters significantly increased from P14–15 to P19–22 (Figure 5A), implicating a developmental reduction of presynaptic release probability at these excitatory synapses. The presynaptic change was further tested by performing the variance-mean (V-M) analysis of uEPSCs/uEPSPs to directly estimate the number of release sites (N), the presynaptic release probability (Pr), and the postsynaptic quantal size (Q), which are three major variables determining the quantal release efficacy (Scheuss and Neher, 2001; Gu et al., 2013). As shown by an example PC→PV excitatory synapse, parabola fit of the mean versus variance of amplitudes of individual uEPSPs was made, and then the binomial equation yielded the estimated values of N, Pr, and Q of this PC→PV synapse (Figure 5B). Implementation of the same estimation to all layer 4 PC→PC, PC→PV, and PV→Sst excitatory synapses examined at P14–15 and P20–22 revealed a ubiquitous reduction of Pr and unchanged N and Q at all three synapses (Table S2). We further validate the V-M analysis results by another experiment of altering extracellular [Ca2+]i (Mitra et al., 2012) at 1, 2, and 3.7 mM for the PC→PV excitatory synapse at P14–15 and obtained similar N and Pr values (Pr: 0.66 ± 0.025; N: 8.56 ± 1.89; Q: 21.75 ± 1.58 pA; n = 5). Thus, developmental reduction of Pr is a common presynaptic factor involved in the selective modulation of STPs at all examined intracortical excitatory synapses in the layer 4 circuit.

Activity-dependent relief from the polyamine block of postsynaptic Ca2+-permeable (CP) α-amino-3-hydroxy-5-methyl-4-isoaxazolepropionic acid (AMPA) receptors (CP-AMPARs) can act as a postsynaptic mechanism underlying the STP regulation at cortico PC→PV excitatory synapses (Rozov and Burnashev, 1999). To determine whether this postsynaptic mechanism may contribute to the observed selective developmental modulation of STP at layer 4 PC→PV excitatory synapses, we measured its STP at P14 and P21 using an internal solution supplemented with 50 μM spermine. The effectiveness of spermine blockage on CP-AMPARs was confirmed by measuring the inward-rectification of AMPAR-mediated EPSCs in the PC or PV cell (Figure S2A, in the presence of 50 μM D-AP5 and 50 μM picrotoxin), and only the PV cell showed characteristic inward rectifying current-voltage (I-V) plots (Figures S2B and S2C). We then examined the STP of PC→PV synapse using the spermine-containing internal solution and found that the STD showed similar attenuation from eye opening to the CP onset (Figures S2D and S2E) in comparison with the STD curves assayed using the normal internal solutions (Figure 2C or Figure S2E, gray lines). These results exclude a possibility that the polyamine-dependent postsynaptic signaling could account for the developmental attenuation of STD at this synapse. We also tested the effects of a selective CP-AMPAR antagonist, 1-naphthyl acetyl spermine (NAS, 100 μM) in the bath), on the basal transmission and STP of the PC→PV synapse, using the normal internal solution. The results showed that 10 min after applying NAS in the bath, amplitudes of the first uEPSP were significantly reduced (Figures S2F and S2G), but there were no significant differences in the STD curves before and after the NAS application at P14–16 (p = 0.85) and at P20–23 (p = 0.06; Figure S2H). These results are in agreement with the recent finding that NAS decreased unitary synaptic responses but had little effect on STD of layer 2/3 PC→PV synapses in mouse V1 around P20 (Lu et al., 2014). However, when comparing the STD curves measured under the NAS application (blue lines in Figure S2H) between P14–16 and P20–23, it still

Please cite this article in press as: Miao et al., Selective Maturation of Temporal Dynamics of Intracortical Excitatory Transmission at the Critical Period Onset, Cell Reports (2016), http://dx.doi.org/10.1016/j.celrep.2016.07.013
Figure 4. Unchanged STP of Long-Range TC Synapses onto Layer 4 PC and PV Cells during the Transition to CP

(A) Schematic diagram depicting the field electrical stimulation (Sti.) activation of thalamocortical (TC) and corticothalamic (CT) axons and the recording (Rec.) of synaptic currents from the layer 4 (L4) neuron. WM, white matter; dLGN, dorsal lateral geniculate nucleus.

(B1 and B2) Two distinct components of EPSPs recorded from the PC (B1) or PV cell (B2) in the presence of cortical silencing cocktail (50 μM muscimol and 70 μM SCH509911). Rows: putative tcEPSPs (top) showing paired-pulse depression and short latencies (magenta closed circles), ctEPSPs (middle) exhibiting less paired pulse depression and longer latencies (green closed circles), and the combined responses (tcEPSP + ctEPSP, bottom) (magenta and green open circles). Note the onset time of tcEPSPs (magenta vertical dashed line) and ctEPSPs (green vertical dashed line) are determined by the intersection of the baseline (horizontal dashed line) with a parabola fit to the rising phase of tcEPSP and ctEPSP, respectively.

(C1 and C2) Correlation plots of the latency time and the paired-pulse ratio for evoked EPSPs recorded from the PC (C1; n = 18) and PV cell (C2; n = 18), respectively. Horizontal dashed lines denote the boundary (latency 2.5 ms) for separating tcEPSP and ctEPSP. Squares with error bars: mean values of the latency and the paired-pulse ratio (±SEM).

(D) Plots of the latency ratio of the second EPSP to the first one. Note that the ratios for tcEPSPs (n = 25) center to 1, while that for ctEPSPs (n = 21) bias toward <1.

(E) Top: input-output curves of the stimulation intensity (above the threshold value) versus the peak amplitude of tcEPSPs in the PC at P15–16 (black) and P20–21 (red). Light colored lines denote data from individual cells, and thick lines are the average curves. Bottom: comparing STDs at the TC→PC synapses between P15–16 and P20–21.

(F) Similar to (E) except the tcEPSPs in the PV cell. Error bars represent SEM. **p < 0.01, ***p < 0.001. n, the number of examined cells.
remained significant different (p = 0.006, comparing blue curves P14–16 versus P20–23). Thus, these results suggest that the polyamine/CP-AMPAR-dependent postsynaptic mechanism is unlikely to contribute to the developmental modulation of STP at the layer 4 PC → PV synapse during the transition to CP onset.

DISCUSSION

In this study, we found that, in the layer 4 of developing V1, STPs of intracortical excitatory synapses from PC to PC or inhibitory PV and Sst cells are selectively regulated during the transition from pre-CP to CP. In contrast, STPs of intracortical inhibitory synapses and long-range TC excitatory synapses are not modulated during the same period. Such selective modulation at intracortical excitatory synapses results from a ubiquitous downregulation of glutamate release probability at the presynaptic PC axonal terminals targeting onto both excitatory and inhibitory cells. These systematic characterization results demonstrate that there exists a STP modulation at distinct cortical synapses in the layer 4 circuit from eye opening to the CP onset. Together with a recent study that reported selective STP modulation at cortical layer 2/3 excitatory synapses onto the PV cell during the CP (P18–30) (Lu et al., 2014), our findings suggest that distinct developmental modulations of STPs at intracortical excitatory synapses may contribute to the emergence of experience-dependent CP plasticity in the developing V1.

It has been widely accepted that the developmental enhancement of cortical inhibition primarily mediated by PV cells gates the opening of CP (Hensch, 2005). The present study could provide a circuit basis for the emergence of enhanced PV cell-mediated inhibition at the CP onset in the developing V1 layer 4. First, we showed that from pre-CP to CP onset, intracortical drive onto the PV cell becomes less depressed in response to repetitive activation in the circuit (Figures 2A–2C). In addition, the long-range excitatory TC inputs onto the PV cell is strengthened (Figure 4F). Second, the PV → PC inhibitory...
synapse, mediating the feed-forward or feed-back inhibition (Pouille and Scanziani, 2001), increases its strength during this period (Figures 1E and 1F; see Chattopadhyaya et al., 2004; Jiang et al., 2010). These two developmental changes in synaptic functions of the PV cell can contribute to the enhancement of PV cell inhibition on the PC. In contrast, both the excitatory drive onto the Sst cell (Figures 3A and 3B) and its inhibitory output (Figures 1H and 1J) are substantially reduced during the same period. These changes are expected to attenuate the Sst cell impact onto the PC activity. Thus, in the layer 4 circuit, respective levels of the inhibitions mediated by PV and Sst cells undergo opposite changes during the transition to CP onset.

In addition to forming inhibitory synapses onto the PC, GABAergic interneurons themselves are also interconnected and formed dis-inhibitory synapses (Pfeffer et al., 2013). Our results show that the Sst → PV inhibitory synapse is strengthened in the layer 4, while the reciprocal PV → Sst inhibitory synapse is conversely weakened. Such differential modulations on the dis-inhibitory synapses could counterbalance the opposite changes of the PV- and Sst cell-mediated inhibitions onto the PC when these two types of interneuron are activated simultaneously. It may also play a role in maintaining a proper excitation-inhibition (E-I) balance when the PV cell inhibition is leveled up to trigger the CP. The developmental or activity-dependent differential changes in the PV- and Sst-cell inhibitory circuits have also been found across different developing sensory cortices (Maffei et al., 2004; Bartley et al., 2008; Takesian et al., 2010, 2013). A recent study demonstrated that a delicate control of cortical PV cell inhibition via the dis-inhibitory synapse was actively involved in initiating the CP plasticity of the developing V1 (Kuhlman et al., 2013). Considering the fact of ~40% connection probability between cortical PV and Sst cells in the V1 layer 4 (Figure 3), potential roles of the Sst cell in regulating the cortical inhibition level and the CP plasticity cannot be ignored. It is of interest to elucidate whether and how the dis-inhibitory circuit plays a role in regulating the CP plasticity.

Our major finding that experience-dependent developmental modulation of STPs during the transition to CP is restricted to the intracortical excitatory synapse in the layer 4 circuit is largely in line with these changes in visual response properties during the development. The experience-dependent reduction of basal transmission and STD of layer 4 PV→PC synapses during this period favors a sharpening of orientation tuning and more reliable responses to rhythmic visual inputs in visual cortical PCs (Ko et al., 2013). Moreover, the reduced STD at cortical PC→PV synapses at the CP onset (Figures 2A–2C) could enhance the excitatory drive to the PV cell and facilitate the recruitment of PV cells upon visual inputs. The recruitment of activated cortical PV cells has been shown to effectively suppress cortical spontaneous activity originating from the visual thalamus (Toyozumi et al., 2013) and to enhance the processing of nature scenes in the mouse V1 (Zhu et al., 2015). Meanwhile, cortical Sst cells also play important roles in processing sensory information (Melamed et al., 2008; Wilson et al., 2012; Lee et al., 2014; Petersen, 2014; Chen et al., 2015). In the mouse V1, they show similar orientation and direction selectivity as that of PCs, exhibiting tuning from weakly tuned to highly selective (Ma et al., 2010). However, it needs further studies, using in vivo imaging guided recording, to address how synaptic functional changes in cortical Sst cells and other distinct changes in the layer 4 synaptic circuit before the CP contribute to the development of their tuning properties.

Functional maturation of cortical excitatory and inhibitory networks is important for gating the emergence of experience-dependent CP plasticity (Toyozumi et al., 2013) and visual functions (Griffen et al., 2012) in developing V1. In addition to the well-known inhibitory threshold mechanism, the experience-dependent, target cell-independent modulation of synaptic dynamics we observed at distinct intracortical excitatory synapses may represent another essential circuit mechanism for regulating the CP opening.
EXPERIMENTAL PROCEDURES

Animals
Wild-type C57BL/6 mice and four transgenic lines—B13 (PV-EGFP, J. Z. Huang, CSHL; Dumitriu et al., 2007), PV-IRE-Cre (Jax No: 8069, generated by S. Arbor, FM), Sst-IRE-Cre (J. Z. Huang, CSHL; Jax no. 13044), and the tdTomato reporter A9 (Rosa-CAG-LSL-tDTomato-WPRE; H-k. Zeng, Allen Brain Institute; Jax No. 7908) (Madisen et al., 2010)—were in the present study. The PV-IRE-Cre and Sst-IRE-Cre mice were crossed to the A9 mice to generate PV-Cre: A9 and Sst-Cre: A9 alleles, in which most PV and Sst cells are genetically labeled by red fluorescence protein tdTomato, respectively. All pups were reared in a normal 12/12 hr light/dark cycle, except those reared in the homemade dark cages from birth. The protocols of mouse breeding, care, and experimentation were approved by the Animal Care and Use Committees of the State Key Laboratory of Cognitive Neuroscience and Learning at Beijing Normal University (IACUC-BNU-NKLCNL-2013-10) and Shanghai Institute for Biological Sciences, Chinese Academy of Sciences (Ref. No. NA-100418).

Preparation of Brain Slices
The preparation of visual cortical slices from young mice at the designed postnatal days followed a method described in our previous studies (Lu et al., 2007; Zhang et al., 2009). In brief, WT, B13, PV-Cre::A9, or Sst-Cre::A9 mice at P14–31 were anaesthetized with sodium pentobarbital (Nembutal, Abbott, 50 mg/kg, intraperitoneally [i.p.]). After decapitation, the brain was dissected rapidly and placed in ice-cold oxygenated aCSF containing 125 mM NaCl, 3 mM KCl, 2 mM CaCl2, 2 mM MgSO4, 1.25 mM NaH2PO4, 1.3 Na+-ascorbate, 0.6 Na+-pyruvate, 26 NaHCO3, and 11 glucose (pH 7.4). For dark-reared animals, the above procedures were completed in red-lighting dark room. Coronal section slices (300–350 μm thick) were made with a vibratome (Vibratome or VT-1202S, Leica) and incubated in a chamber with oxygenated aCSF at 34°C for 30 min and then at room temperature (20°C–25°C) for >30 min before use for the recording experiments.

Electrophysiology
The cortical slices in the recording chamber were perfused with oxygenated aCSF at a rate of 2 ml/min. Whole-cell recordings, in either voltage- or current-clamp mode, were made from pairs of excitatory PCs, GABAergic PV or Sst cells in the visual cortical layer 4, under an Olympus microscope (BX51WI) equipped with an infrared video camera (IR-1000) and differential interference contrast optics. The borosilicate glass microelectrodes were pulled by a Sutter taper puller (P979 or P-1000) and was filled with an internal solution containing 130 mM K+-gluconate, 20 mM KCl, 10 mM HEPES, 0.2 mM EGTA, 4 mM Mg2ATP, 0.3 mM Na2GTP, and 10 mM Na2-phosphocreatine (at pH 7.3, 290–310 mOsm) for recording excitatory postsynaptic currents or potentials (EPSCs or EPSPs), or with a high-Cl- solution containing 94 mM K-glucuronate, 60 mM KCl, 10 mM HEPES, 0.2 mM EGTA, 4 mM Mg2ATP, 0.3 mM Na2GTP, and 10 mM Na2-phosphocreatine (at pH 7.3, 290–310 mOsm) for recording inhibitory postsynaptic responses. The micropipette resistance was 2–4 MΩ. To assay the efficacy and dynamics of unitary synaptic transmission, a train of 5 or 10 current pulses (2 ms duration, 0.8–2 nA at 20 or 40 Hz) was intracellularly injected to the presynaptic neuron (in the current-clamp mode) at time intervals of 10 or 20 s. For activating long-range TC synapses on layer 4 cells, similar trains of 5 pulses (2 ms duration, 0.8–2 nA at 20 or 40 Hz) were delivered through a concentric tungsten electrode (125 μm outer diameter [o.d.] placed in the white matter layer, and stimulation intensity was set at a magnitude of ~20% above the threshold values. Evoked postsynaptic potentials or currents (PSPs/PCs) were recorded from postsynaptic neuron (in the current-clamp mode) with an Axopatch-700B amplifier (Molecular Devices). In recordings from the postsynaptic PV cell, due to its small membrane resistance (~60 MΩ), series resistance (Rs) compensation was essential in the voltage-clamp mode. However, because the Rs compensation could bring about two potential pitfalls, adding noise to the current measurement and easy prone to membrane oscillations, PSCs, rather than PCs, were recorded from the PV cell under the current-clamp, using the bridge-balance to compensate the Rs-induced voltage drop. Short-term synaptic dynamics measured in the two modes showed similar magnitudes and temporal properties (Figure S1).

To isolate tcEPSPs, a cortical silencing cocktail of muscimol (50 μM, a GABA_A receptor agonist) and SCH50911 (70 μM, a GABA_B receptor antagonist) was applied in the aCSF solution, following a method described in previous studies (Lu et al., 2007; Khibnik et al., 2010). All recordings were done at the temperature of 31°C–33°C (Warner Instrument Corporation, TC-324B). Individual synaptic responses with the amplitude below the noise level were identified as the failure and included in the calculation of mean PSRs/PCs as events with the amplitude of 0. Values of Rs of postsynaptic neuron were monitored throughout the recording. Synaptic responses were accepted for analysis only for the cases, in which the recorded neurons showed resting membrane potentials <–60 mV, access resistance (Ra) < 30 MΩ, and the Rs change <30% throughout the experiment. Electric signals were filtered at 2 or 4 kHz (low pass), digitized by a Digidata 1322A converter board (Molecular Devices) and acquired at 20 kHz with the pClamp9.2/10 (Molecular Devices) into a computer for further analysis with custom programs in the MATLAB (MathWorks). All chemicals were obtained from Sigma-Aldrich or Tocris Bioscience.

Data Analysis
In the present study, 255 mice in total were used, and the data for each condition were collected from slices obtained from at least 3 mice. Data from recorded cells showing Ra > 30 MΩ were excluded from calculating the synaptic strength, but were included in calculating the connection probability and STP. The amplitudes of the first averaged PSP/PSC elicited by the train stimuli were used for asssaying the basal synaptic strength, while the C.V. of basal transmission was calculated from the amplitudes of individual trials. The rise time of PSCs/PSPs was calculated from 10% to 90% rising phase, and the decay time constant (τ_{decay}) was estimated by using a single exponential fit to the decay phase from the peak to 20% of amplitudes. To assay the efficacy of electrical synapse between two cortical PV cells, averaged values of the two unidirectional-coupling index, which is a ratio of the membrane deflection amplitude in one cell and that of the other connected cell elicited by hyperpolarizing current injection (200–350 pA, 300 ms), was used. The variance-mean analysis was carried out on synaptic responses (mainly EPSCs) evoked by the presynaptic pulse trains. The PSC amplitude was determined for each pulse, and the mean (M) and variance (V) were plotted against each other. Synaptic quantal parameters including number of release sites (N) and quantal size (Q) were obtained by fitting the relationship between M and V to the parabola: V = QM – M²/N (Scheuss and Neher, 2001; Gu et al., 2013). As under the condition of absence of non-linear summation of small EPSCs, the V-M analysis is also valid for PSPs (Scheuss and Neher, 2001). We considered only those cases in which the R² value of the fit was >0.33 and estimated N <50.

Statistical Analysis
All data are presented as mean ± SEM, unless otherwise noted. For comparisons between two conditions, the statistical significance (p) values were obtained using unpaired two-tailed Student’s t test when the data were in the normal distribution (tested by the Jarque-Bera test). For data showing the non-normal distribution, the nonparametric Kolmogorov-Smirnov and the paired-sample sign tests were used. The chi-square (χ²) test was used to determine the significance of the connectivity difference between different developmental stages. The comparison of short-term plasticity between different developmental stages was done by ANOVA.

SUPPLEMENTAL INFORMATION
Supplemental Information includes two figures and two tables and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2016.07.013.

AUTHOR CONTRIBUTIONS
Q.M. and L.Y. performed electrophysiology experiments. Q.M., L.Y., and M.J.R. analyzed the data. Q.Y. and X.L. helped the immune-staining of cortical interneurons. X.Z. and Q.M. designed the experiments and wrote the manuscript.

ACKNOWLEDGMENTS
The authors wish to thank Dr. J.Z. Huang (CSHL) for providing the B13 mice and Drs. Y.X. Lin (MIT) and H.W. Tao (USC) for their comments on the
manuscript. This work was supported by a grant from the State Key Research Program of China (2011CB900403) to X.Z.

Received: October 28, 2015
Revised: May 10, 2016
Accepted: July 1, 2016
Published: July 28, 2016

REFERENCES

Please cite this article in press as: Miao et al., Selective Maturation of Temporal Dynamics of Intracortical Excitatory Transmission at the Critical Period Onset, Cell Reports (2016), http://dx.doi.org/10.1016/j.celrep.2016.07.013

